Data injection detection in ROS 2 robotic systems using entropy metrics and an autoencoder+LSTM pipeline

Authors

  • Jorge Gutiérrez Universidad Federal de Río Grande (FURG), Facultad de Ciencias de la Computacion / Universidad Tecnológica del Uruguay (UTEC), Departamento de Mecatrónica, Logística y Biomédica Author
  • Bruno Lopes Dalmazo Universidad Federal de Río Grande (FURG), Facultad de Ciencias de la Computacion Author
  • Paulo Lilles Jorge Drews Junior1 Universidad Federal de Río Grande (FURG), Facultad de Ciencias de la Computacion Author

Keywords:

Anomaly Detection, ROS 2, Entropy Metrics, Autoencoder+LSTM, Time Series

Abstract

Distributed robotic systems based on ROS 2 require lightweight, real-time mechanisms for the early detection of anomalous behavior (Blázquez-García et al., 2021). Data injection or irregularities in topic publication compromise security, robustness, and operational continuity. Although ROS 2 incorporates security measures (e.g., DDS Security), its overhead can be non-trivial; therefore, complementary monitoring strategies that operate on internal telemetry, without network instrumentation or heavy cryptography, are valued (Zhang et al., 2022; Fernández et al., 2018). This work presents a hybrid approach that combines entropy metrics calculated in sliding windows with an Autoencoder (AE) + LSTM pipeline trained exclusively on nominal robot data. Three complementary entropic measures are employed: Shannon (Shannon, 1948), transitions (based on successive differences; Nardone, 2014), and KDE (a nonparametric approximation of density; Myers et al., 2025). All are calculated over windows of W = 100 samples to capture recent behavior. Stationarity is also verified using ADF on nominal segments, enabling statistical calibration of thresholds (Dickey and Fuller, 1979; Wang et al., 2023). The use of AE and LSTM is supported by robust representation and sequential modeling (Vincent et al., 2008; Hochreiter and Schmidhuber, 1997; Malhotra et al., 2016; Hundman et al., 2018). The system relies on internal telemetry (e.g., /cmd_vel, /odom, /laser_scan, /imu/data; and /movement_label, /attack_type tags) and produces a binary decision with K-persistence and alerts (/ads/alert). In offline evaluation, with explicit selection of the operating point under FPR constraint, high detection rates and low latency are achieved, indicating feasibility for online deployment over ROS 2 (Abokhdair and Baig, 2025).

Downloads

Download data is not yet available.

References

Abokhdair, M., & Baig, Z. (2025). A deep learning–based intrusion detection system for ROS 2. In Proceedings of the International Joint Conference on Neural Networks (IJCNN). IEEE. (En prensa)

Ahmed, S., Khan, S., & Mian, A. (2023). Entropy-SLAM: Improving robustness and resilience of SLAM systems using entropy-based anomaly detection. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

Blázquez-García, A., Conde, A., Mori, U., & Lozano, J. A. (2021). A review on outlier/anomaly detection in time series data. ACM Computing Surveys, 54(3), 1–33.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431.

Fernández, G., Rossi, F. A. E., & García, F. J. (2018). Security and performance considerations in ROS 2: A balancing act. arXiv preprint arXiv:1809.09566.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

Hundman, K., Constantinou, V., Laporte, C., Colwell, I., & Soderstrom, T. (2018). Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (pp. 387–395). ACM.

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). LSTM-based encoder–decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148.

Myers, A., Kay, B., Alvarez, I., Hughes, M., Mackenzie, C., Ortiz Marrero, C., Ellwein, E., & Lentz, E. (2025). Entropic analysis of time series through kernel density estimation. arXiv preprint arXiv:2503.18916.

Nardone, P. (2014). Entropy of difference. arXiv preprint arXiv:1411.0506. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.

Tatbul, N., Lee, T. J., Zdonik, S., Alam, M., & Gottschlich, J. (2018). Precision and recall for time series. In Advances in Neural Information Processing Systems (NeurIPS).

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning (pp. 1096–1103). ACM.

Wang, Y., Zhang, M., & Li, R. (2023). Entropy-based anomaly detection in time series using ADF stationarity validation. IEEE Transactions on Industrial Informatics, 19(4), 4450–4461.

Zhang, T., Shangguan, L., Su, Q., & Zhou, Y. (2022). On the (in)security of secure ROS2. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS) (pp. 1929–1944). ACM.

Downloads

Published

2025-12-05

Issue

Section

Extended abstracts - CINTIA

How to Cite

Data injection detection in ROS 2 robotic systems using entropy metrics and an autoencoder+LSTM pipeline. (2025). LINKS Revista Internacional, 3(1). https://revista.utec.edu.uy/ojs/index.php/revistalinks/article/view/47

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.