Agrophotovoltaics

an innovative approach to agricultural and energy sustainability

Authors

  • Wellington Mezzomo Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author https://orcid.org/0000-0002-1169-0620
  • Conrado Fleck dos Santos ²Ingeniería en Energías Renovables, Universidad Tecnológica, Durazno, Uruguay Author
  • Luis Bahu Ben Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author https://orcid.org/0000-0003-4284-3789
  • Diego Barreto Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author https://orcid.org/0000-0003-2539-0319
  • Rogério Ricalde Torres Instituto Federal de Educação, Ciência e Tecnologia, Rio Grande do Sul, Brasil Author https://orcid.org/0000-0002-4590-1473
  • Santiago Jaunarena Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author

Keywords:

Cultivation under photovoltaic systems, Climate change, Sustainable development, Environmental impact

Abstract

Agrophotovoltaics (APV) is an innovative technology that combines solar energy generation with agricultural activities, offering solutions to critical challenges such as food security, sustainable energy production, and climate change mitigation. This article explores how APV aligns with the United Nations (UN) Sustainable Development Goals (SDGs) and presents global and Uruguay-specific opportunities. APV has demonstrated its ability to significantly increase land-use efficiency by allowing solar panels to coexist with crops, which can stabilize both food and energy production simultaneously. Countries such as Germany, India, and Chile have implemented successful pilot projects showcasing economic, social, and environmental benefits.

Uruguay, with its high solar radiation levels, is well-positioned to adopt APV. This technology offers opportunities to enhance natural resource efficiency, increase food security, and reduce the environmental impact of agriculture and energy production. The Technological University of Uruguay (UTEC) is leading research in the country to technically evaluate land, water, and energy use efficiency, as well as the economic viability of this technology in the local context.

Despite its benefits, the implementation of APV faces challenges such as initial investment costs, farmer training, and cultural acceptance, among others. Effective collaboration between government, academic, and business sectors is essential to drive research and the adoption of this technology in Uruguay.

Downloads

Download data is not yet available.

References

Agostini, A., Colauzzi, M., y Amaducci, S. (2021). Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281(116102). https://doi.

org/10.1016/j.apenergy.2020.116102

Comisión Económica para América Latina y el Caribe (2016). Ecoinnovación y producción verde:

Una revisión sobre las políticas de América Latina y el Caribe (LC/TS.2017/3). Compilados por Rovira, S. Patiño, P. Schaper M. Santiago, Chile, Publicación de Naciones Unidas.

Cusva, García Andrea Carolina (2022). Análisis para determinar la viabilidad y potencialidad de sistemas agrofotovoltaicos en zonas agricultoras de Colombia. Tesis de maestría en Ingeniería Eléctrica, Universidad de Los Andes, Facultad de Ingeniería, Departamento de Ingeniería Eléctrica y Electrónica Bogotá, Colombia.

El Mekaoui, A. (2018). El sector energético retos y problemas sociales: caso de los megaproyectos en las comunidades del estado de Yucatán, México. Ingeniería, 22(1), 64-75. https://www.redalyc.org/

articulo.oa?id=46757993007

Goetzberger, A., y Zastrow, A. (1981). Kartoffeln unter dem Kollektor. Sonnenenergie, 3(81),19–22.

https://www.dgs.de/fileadmin/newsletter/2019/SE_3-81_Kartoffeln_unter_dem_Kollektor.pdf

Ketzer, D. (2020). Land Use Conflicts between Agriculture and Energy Production. Systems Approaches to Allocate Potentials for Bioenergy and Agrophotovoltaics. Dissertation.

Ministerio de Ganadería, Agricultura y Pesca (2017). Uruguay Agrointeligente: los desafíos para un

desarrollo sostenible. Disponible en https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/

sites/ministerio-ganaderia-agricultura-pesca/files/201912/libro%20completo%20con%20hipervinculos.pdf

Naciones Unidas (2018). La Agenda 2030 y los Objetivos de Desarrollo Sostenible: una oportunidad para América Latina y el Caribe (LC/G.2681-P/Rev.3), Santiago. Acceso en 05/06/2023, disponible

en https://repositorio.cepal.org/bitstream/handle/11362/40155/24/S1801141_es.pdf

Ramos-Fuentes, I. A., Elamri, Y., Cheviron, B., Dejean, C., Belaud, G., y Fumey, D. (2023). Effects

of shade and deficit irrigation on maize growth and development in fixed and dynamic agrivoltaic systems. Agricultural Water Management, 280(108187). https://doi.org/10.1016/j.agwat.2023.108187

Schneider, K. (2018). Agrophotovoltaik goes global: von Chile bis Vietnam. Freiburg.

Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G., Reise, C., ... y Weber, E. (2020). Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. Applied Energy, 265(114737). https://doi.org/10.1016/j.apenergy.2020.114737

Trommsdorff, M., Gruber, S., Keinath, T., Hopf, M., Hermann, C., Schönberger, F., ... y Vollprecht, J.

(2020). Agrivoltaics: opportunities for agriculture and the energy transition. A guideline for Germany. Fraunhofer Institute for Solar Energy Systems ISE. 1 Edition, October. disponible en https://

solargrazing.org/wp-content/uploads/2021/03/APV-Guideline.pdf

Trommsdorff, S., Schindele, S., Vorast, M., Durga, N., Patwardhan, S. M., Baltins, K., Söthe-Garnier, A., y

Grifi, G. (2019). Feasibility and Economic Viability of Horticulture Photovoltaics in Paras, Maharashtra,

India.

Trommsdorff, M., Dhal, I. S., Özdemir, Ö. E., Ketzer, D., Weinberger, N., y Rösch, C. (2022). Agrivoltaics:

solar power generation and food production. En Gorjian, S., & Campana, P. E. (Eds.), Solar energy

advancements in agriculture and food production systems (pp. 159-210). Academic Press. https://doi.

org/10.1016/B978-0-323-89866-9.00012-2

Touil, S., Richa, A., Fizir, M., y Bingwa, B. (2021). Shading effect of photovoltaic panels on horticulture crops production: a mini review. Rev Environ Sci Biotechnol 20, 281–296. https://doi.org/10.1007/

s11157-021-09572-2

Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P., Frisson, T., Ryckewaert, M. y Christophe, A.

(2017). Increasing the total productivity of a land by combining mobile photovoltaic panels and food

crops. Applied Energy, 206 (1495–1507). https://doi.org/10.1016/j.apenergy.2017.09.113

Weselek, A., Bauerle, A., Hartung, J., Zikeli, S., Lewandowski, I., y Högy, P. (2021). Agrivoltaic

system impacts on microclimate and yield of different crops within an organic crop rotation in

a temperate climate. Agronomy for Sustainable Development, 41(5). https://doi.org/10.1007/s13593-

-00714-y

Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for sustainable development, 39(35) 1-20. https://doi.org/10.1007/s13593-019-0581-3

Agro

Downloads

Published

2025-02-12

Data Availability Statement

Research data is not available.

Issue

Section

Original articles - Agro-environmetal

How to Cite

Agrophotovoltaics: an innovative approach to agricultural and energy sustainability. (2025). LINKS Revista Internacional, 2(2), 10-21. https://revista.utec.edu.uy/ojs/index.php/revistalinks/article/view/3

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.