Evaluation of different concentrations of microalgae as potential biostimulant for the germination of Raphanus sativus seeds

Authors

  • Rafaela Basso Sartori Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author
  • Eduardo Jacob-Lopes Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Rio Grande do Sul, Brasil Author
  • Richard Alberto Rodríguez Padrón Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author
  • Ramírez Mérida Ramírez Mérida Ingeniería en Agua y Desarrollo Sostenible, Universidad Tecnológica, Durazno, Uruguay Author

Keywords:

Microalgae, Cyanobacteria, Biomass, Germination, Sustainability

Abstract

The continued growth of the population world has imposed great challenges about agriculture. As a result, the farmers have widely adopted the excessive use of synthetic fertilizers and pesticides to meet the growing demand for food around the world. Although these products have helped many developing countries to increase the yield of their crops, they have result simultaneously in many problems, mainly the decrease of soil fertility and degradation of local ecosystems. So, so that agriculture is more sustainable, the use of alternative biological products, with recognized beneficial effects on the performance and health of the plants. In this context, microalgae are rich sources of nutrients and metabolites bioactives, which have been gaining prominence in their form as properties biostimulants. Biostimulants are products derived from organic matter that, when applied in small quantities, are capable of stimulating the growth and development of various crops and plant species. In this sense, this study evaluates different concentrations of Spirulina platensis and Scenedesmus obliquus as potential biostimulant to induce the germination of Raphanus sativus seeds. Specifically, the first experiment was carried out to know the kinetic data of each microorganism and the second evaluated the germination of seeds of the Raphanus sativus cultivar in which it was used the suspension of these microorganisms to maintain the ideal humidity for the development. Treatments will be carried out for the same for both Spirulina platensis and for Scenedesmus obliquus, where the cultures were diluted in distilled water in suspensions containing (T5) 5%, (T10) 10%, (T15) 15% and (T25) 25% and control treatments containing only distilled water (TC1) and another that contained only culture medium (TC2). By Finally, it was confirmed that Spirulina platensis and Scenedesmus obliquus act as biostimulants capable of generating a good germination rate, contributing to better assimilation and stimulation of the metabolism of the Raphanus cultivar sativus. Furthermore, when we compare the two strains, the microalgae Scenedesmus obliquus obtained greater productivity cell (19.45 mg/L.h) and a higher rate of germination 138.8% when the 15% suspension treatment.

Downloads

Download data is not yet available.

References

Borowitzka, M. A. Biology of Microalgae. In: Microalgae in Health and Disease Prevention. Edited by Levine IA, Fleurence J. Academic Press, 23-72, 2018.

Campanella, L.; Crescentini, G.; Avino, P. Chemical composition and nutritional evaluation of some natural and commercial food products based on Spirulina. Analusis, 27, 533–540, 1999.

Cordeiro, E. C. N.; Mógor, Á. F.; de Oliveira Amatussi, J.; Mógor, G.; de Lara, G. B.; Marques, H. M. C. Microalga Biofertilizer Triggers Metabolic Changes Improving Onion Growth and Yield. Horticulturae, 8, 223, 2022.

Costa, S. S.; Miranda, A. L.; Andrade, B. B.; De Morais, M. G.; Costa, J. A. V.; Druzian, J. I. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. International Journal of Biological Macromolecules, 116, 552–562, 2018.

Dantas, G. J.; Silva, P. F.; Matos, R. M.; Borges, V. E.; Neto, J. D. Produção comercial de rabanete fertirrigado com nitrogênio em ambiente protegido. Revista Educação Agrícola Superior. 29, 97-102, 2014.

De Morais, M. G.; Costa, J. A. V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129, 439–445, 2007.

Ferreira, A.; Bastos, C. R. V.; Santos, C. M.; Acien-Fernandez, F. G.; Gouveia, L. Algaeculture for agriculture: from past to future. Frontiers in Agronomy, 5, 1064041, 2023.

Gautam, K.; Rajvanshi, M.; Chugh, N.; Dixit, R. B.; Kumar, G. R. K.; Dasgupta, S. Microalgal applications toward agricultural sustainability: Recent trends and future prospects. Microalgae, 339-379, 2021.

Gérin, S.; Delhez, T.; Corato, A.; Remacle, C.; Franck, F. A novel culture medium for freshwater diatoms promotes efficient photoautotrophic batch production of biomass, fucoxanthin, and icosapentaenoic acid. Journal of Applied Phycology, 32, 1581–1596, 2020.

Habib, M. A. B.; Parvin, M.; Huntington, T. C.; Hasan, M. R. A review on culture, prodution and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. No 1034, FAO, Rome, pp. 2–18, 2008.

Hilderandt, T. M.; Nesi, A. N.; Araújo, W. L.; Braun, H. P. Amino acid catabolism in plants. Molecules in Plant, 8, 1563–1579, 2015.

Jacob-lopes, E.; Maroneze, M. M.; Depra, M. C.; Sartori, R. B.; Dias, R. R.; Zepka, L. Q. Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1–7, 2019.

Lupatini, A. L.; Colla, L. M.; Canan, C.; Colla, E. Eliane Colla. Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of food and agriculture, 1, 2016.

Maroneze, M. M.; Siqueira, S. F.; Vendruscolo, R. G.; Wagner, R.; De Menezes, C. R.; Zepka, L. Q.; Jacob- lopes, E. The role of photoperiods on photobioreactors—a potential strategy to reduce costs. Bioresource Technology, 219, 493–499, 2016.

Prisa, D.; Spagnuolo, D. Plant Production with Microalgal Biostimulants. Horticulturae, 9, 829, 2023. Ramírez-Moreno, L.; Olvera-Ramírez, R. Uso tradicional y actual de Spirulina sp. (arthrospira sp.). Interciencia, 31, 657-663, 2006.

Riviers, B. Biologia e Filogenia das Algas. Porto Alegre, Ed. Artmed, p. 21-27; 66-94; 153-183, 2006.

Rhoden, M. A.; Viana, J. G. A.; Silveira, V. C. P. Change in land use and economic dynamics of the Ibirapuitã River Environmental Protection Area of the Brazilian Pampa biome. Semina: Ciências Agrárias. Londrina, 43, 2137-2154, 2022.

Safi, C.; Charton, M.; Pignolet, O.; Silvestre, F.; Vaca-Garci, C.; Pontalier, P. Y. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology, 25, 523–529, 2013.

Singh, P.; Kumar, D. Biomass and Lipid Productivities of Cyanobacteria- Leptolyngbya foveolarum HNBGU001. Bioenergy Research, 14, 278–291, 2021.

Yadav, G.; Sekar, M.; Kim, S. H.; Geo, V. E.; Bhatia, S. K. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. Bioresource Technology, 325, 124654, 2021.

portada artículo microalgas

Downloads

Published

2025-02-12

Issue

Section

Original articles - Agro-environmetal

How to Cite

Evaluation of different concentrations of microalgae as potential biostimulant for the germination of Raphanus sativus seeds. (2025). LINKS Revista Internacional, 2(2), 22-35. https://revista.utec.edu.uy/ojs/index.php/revistalinks/article/view/2

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.