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1. INTRODUCCION

Los sistemas robodticos distribuidos basados en ROS 2 requieren mecanismos de
deteccién temprana de comportamientos anémalos que sean livianos y operables en
tiempo real (Blazquez-Garcia et al., 2021). La inyeccion de datos o las irregularidades en
la publicacidon de tépicos comprometen seguridad, robustez y continuidad operativa.
Aunque ROS 2 incorpora medidas de seguridad (p. ej., DDS Security), su sobrecarga
puede ser no trivial; por eso se valoran estrategias complementarias de vigilancia que
funcionen sobre telemetria interna, sin instrumentacion de red ni criptografia pesada
(Zhang et al., 2022; Fernandez et al., 2018).

Este trabajo presenta un enfoque hibrido que combina métricas de entropia calculadas
en ventanas deslizantes con un pipeline Autoencoder (AE) + LSTM entrenado
exclusivamente con datos nominales del robot. Se emplean tres medidas entrépicas
complementarias: Shannon (Shannon, 1948), transiciones (basada en diferencias
sucesivas; Nardone, 2014) y KDE (aproximacion no paramétrica de la densidad; Myers
et al., 2025). Todas se calculan sobre ventanas de W = 100 muestras para capturar el
comportamiento reciente. Ademas, se verifica la estacionariedad mediante ADF en
segmentos nominales, lo que habilita calibracion estadistica de umbrales (Dickey y Fuller,
1979; Wang et al., 2023). El uso de AE y LSTM se apoya en representacion robusta y
modelado secuencial (Vincent et al., 2008; Hochreiter y Schmidhuber, 1997; Malhotra et
al., 2016; Hundman et al., 2018).

El sistema se apoya en telemetria interna (p. €j., /cmd_vel, /lodom, /laser_scan, /imu/data;
y etiquetas /movement_label, /attack type), y produce una decisién binaria con
persistencia K y alertas (/ads/alert). En evaluacion offline, con seleccion explicita del
punto de operacién bajo restriccion de FPR, se obtienen altas tasas de deteccion y baja
latencia, lo que indica viabilidad para despliegue en linea sobre ROS 2 (Abokhdair y Baig,



2025).

2. METODOLOGIA

2.1. Entorno experimental y datos

Se utiliza el simulador Gazebo con un robot TurtleBot3 en un mundo vacio para construir
linea base de normalidad y generar secuencias mixtas (normales y andémalas). La
adquisicién corre en Docker/ROS 2 con nodos de recoleccién, calculo de entropias y
deteccion. La tasa nominal es 10 Hz; para modelado se remuestrea a 20 Hz (interpolacion
breve en huecos), facilitando ventanas uniformes W=100 (~5 s).
El nodo recolector se suscribe a /cmd_vel, /laser scan, /imu/data, /odom,
/movement_label, /attack type, deriva magnitudes cinematicas (velocidades vy
aceleraciones lineal/angulares, magnitud de velocidad, jerk) y registra CSV con
timestamp. El generador de anomalias introduce patrones (alta/baja frecuencia de
comandos, stop and go, rafagas), con fraccion anémala global ~15-20 %.
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Figura 1. Flujo del ADS en ROS 2/DDS. El ADS suscribe telemetria, combina
entropias+AE+LSTM y decide con umbral th y persistencia K; ante anomalia
publica /ads/alert. Superficie de ataque indicada a la izquierda. (Fuente:
elaboracién propia).

2.2. Métricas de entropia y ventana deslizante

En cada ventana W=100 se calculan tres medidas. Shannon (H) cuantifica la
incertidumbre global de la distribucion de At (intervalos de llegada) u otras
sefiales; la implementacion usa conteos/probabilidades con correccion
numerica para evitar log(0). La entropia de transiciones mide la incertidumbre
de Ax = xt+1—xt, sensible a jitter, rafagas e irregularidades breves. La entropia
por KDE (Hkpe) estima densidad no paramétrica y usa un plug in de entropia
diferencial, capturando cambios sutiles de forma (colas, multimodalidad)



(Myers et al., 2025). La actualizacion deslizante afiade el dato reciente y
descarta el mas antiguo, manteniendo W constante y reflejando condiciones
presentes.

2.3. Pipeline AE+LSTM y regla de decision

El Autoencoder (sobrecompleto; regularizacion L2, dropout, early stopping;
estandarizacién aprendida solo en entrenamiento) produce (i) error de
reconstruccion y (ii) embedding latente para un LSTM que predice un paso. El
puntaje de anomalia combina, con estandarizacion robusta (mediana/MAD) y
pesos (a, B), el error del AE y el del LSTM (Vincent et al., 2008; Hochreiter y
Schmidhuber, 1997; Malhotra et al., 2016). La decision aplica umbral th con
persistencia K para reducir falsos disparos. La calibracion offline recorre una
rejilla de hiperparametros bajo restriccion de FPR . (Tatbul et al., 2018).
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Figura 2. Flujo del pipeline AE+LSTM: el encoder transforma x; (R®) en z: (R%);
el decoder permite reconstruccion; ventanas de tamafo T=20 alimentan el
LSTM que estima zw+1; el puntaje combina errores de reconstruccion y
prediccidn. (Fuente: elaboracién propia).



2.4. Preprocesamiento y estabilidad

El conjunto comprende ~15,8 k registros. Se filtran segmentos nominales, se
aplica burn in (~600 muestras) y se validan integridad y orden temporal. Se
analizan variabilidad media y desviacion estandar de las entropias: KDE es
mas sensible a fluctuaciones (util para cambios sutiles), mientras Shannon y
transiciones aportan estabilidad y sensibilidad complementarias (Myers et
al., 2025; Shannon, 1948; Nardone, 2014). La ADF sobre nominal respalda
calibracion de umbrales bajo supuestos de estacionariedad (Dickey y Fuller,
1979; Wang et al., 2023).
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Figura 3. Evolucion temporal de las entropias (Shannon, transiciones y KDE) en
datos nominales: sefal cruda, media mévil y bandas +10. (Fuente: elaboracion

propia).

3. RESULTADOS Y DISCUSION

3.1. Seleccion del punto de operacion offline

Bajo una busqueda en rejilla y con restriccién explicita de FPR, la relacion FPR-recall
observada en el barrido de parametros (Tatbul et al., 2018) se muestra en la Figura 3.
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Figura 3 — Barrido de parametros FPR vs. Recall

Con base en ese barrido se seleccion6 el punto (a =1.1, 3 = 1.4, K= 3) (véase Tabla 1)

La comparacion entre valores de persistencia K bajo FPR < 0.10 se resume en la Tabla
2.

En la evaluacion punto-a-punto (11 = 0.098; N = 7 559), se obtiene recall = 0.999, FPR =
0.097 y F1 = 0.692. A nivel de evento, el hit rate es 100 %, con latencia media = 0.27

Parametro o 3 K* " PrevaTIrenma Ven_;t_ana
Valor 1.1 1.4 3 15.4413 0.098 20

Tabla 1 — Punto de operacién seleccionado Fuente: elaboracion propia.

K o B th Precisiéon | Recall F1 FPR
1 0.500 2.000 | 25.385444 0.491 0.880 0.630 0.099
2 0.500 2.000 | 19.219507 0.526 0.999 0.689 0.098
3t 1.100 1.400 | 15.441346 0.529 0.999 0.692 0.097
4 1.100 1.400 | 15.441346 0.537 0.993 0.697 0.093
5 1.500 1.000 |12.477342 0.519 0.992 0.682 0.100
6 1.500 0.800 | 10.423824 0.522 0.992 0.684 0.099

Tabla 2 — Mejor combinacion por K. Fuente: elaboracion propia




ventanas (mediana 0) y cobertura media = 0.908. La persistencia K atenua saltos espurios
y privilegia desviaciones sostenidas, adecuado para despliegues en linea.

Pred. Pos Pred. Neg
Real Pos 740 (TP) 1 (FN)
Real Neg 658 (FP) 6160 (TN)

Tabla 3. Matriz de confusion y métricas (mejor global). Parametros: a=1.1, B=1.4, K=3,
th=15.44; N=7 559, m = 0.098; P=0.529, Recall=0.999, F1=0.692; FPR=0.097
(TNR=0.903); Accuracy=0.913. (Fuente: elaboracién propia).

3.2. Analisis de sensibilidad de métricas

Las tres métricas aportan sefales complementarias: Shannon enfatiza cambios en
dispersion/uniformidad de At y otras sefiales; transiciones captura dinamica local (jitter,
rafagas, desorden breve); KDE resalta cambios de forma (colas, multimodalidad)
(Shannon, 1948; Nardone, 2014; Myers et al., 2025). Su combinacién amplia la cobertura
ante anomalias heterogéneas (inyeccion de comandos, desincronizaciones, cambios de
régimen) y reduce la dependencia de un unico indicador (Blazquez-Garcia et al., 2021).

3.3. Ventajas practicas

El enfoque es ligero y agndstico de red: opera sobre topicos y realiza inferencia local,
viable en recursos modestos. La ventana deslizante W=100 a 20 Hz (~5 s) equilibra
sensibilidad/estabilidad temporal. La calibracion se apoya en ADF (segmentos
nominales) y en rejilla con FPR constrefiido, lo que facilita un ajuste reproducible con
criterio operativo (Dickey y Fuller, 1979; Tatbul et al., 2018). La integracién con ROS
2/DDS es directa: el ADS consume telemetria, decide y publica /ads/alert, integrandose
con GUI y registros (Zhang et al., 2022; Fernandez et al., 2018).

4. CONCLUSIONES

Se presentd un esquema hibrido para deteccion de inyeccién de datos en ROS 2 que
integra métricas de entropia (Shannon, transiciones y KDE) con un pipeline AE+LSTM
entrenado con normalidad (Shannon, 1948; Vincent et al., 2008; Hochreiter y
Schmidhuber, 1997). La ADF y la calibracion bajo restriccion de FPR permiten fijar un
punto de operacion con recall casi perfecto, latencia baja y FPR controlado (Dickey y
Fuller, 1979; Tatbul et al., 2018). El enfoque es ligero, no intrusivo y agndstico del trafico
de red, lo que facilita su despliegue en linea. (Abokhdair y Baig, 2025; Zhang et al., 2022).
Limitaciones y lineas de mejora: la evaluacion es offline y en un mundo vacio con un
unico robot y anomalias sintéticas; los resultados dependen del remuestreo a 20 Hz y del
tamano de W=100; la umbralizacion es estatica; no se analizé el impacto de jitter de red
ni de perfiles QoS heterogéneos. Como trabajo futuro, se propone validar en escenarios
reales o simulados mas complejos (obstaculos, interaccién rica), desplegar online con



medicidn extremo-a-extremo de latencialjitter, incorporar umbrales adaptativos vy
deteccion de drift con aprendizaje continuo, y ampliar variables sensoriales/cinematicas
y estados de mision. En aplicaciones, el ADS puede operar como watchdog que publica
/ads/alert hacia GUI y registros, habilita contencion (p. ej., safe stop o degradacion
controlada) y actua como capa de vigilancia complementaria en arquitecturas robdéticas
distribuidas.
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