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1. INTRODUCCIÓN 

Los sistemas robóticos distribuidos basados en ROS 2 requieren mecanismos de 

detección temprana de comportamientos anómalos que sean livianos y operables en 

tiempo real (Blázquez-García et al., 2021). La inyección de datos o las irregularidades en 

la publicación de tópicos comprometen seguridad, robustez y continuidad operativa. 

Aunque ROS 2 incorpora medidas de seguridad (p. ej., DDS Security), su sobrecarga 

puede ser no trivial; por eso se valoran estrategias complementarias de vigilancia que 

funcionen sobre telemetría interna, sin instrumentación de red ni criptografía pesada 

(Zhang et al., 2022; Fernández et al., 2018). 

Este trabajo presenta un enfoque híbrido que combina métricas de entropía calculadas 

en ventanas deslizantes con un pipeline Autoencoder (AE) + LSTM entrenado 

exclusivamente con datos nominales del robot. Se emplean tres medidas entrópicas 

complementarias: Shannon (Shannon, 1948), transiciones (basada en diferencias 

sucesivas; Nardone, 2014) y KDE (aproximación no paramétrica de la densidad; Myers 

et al., 2025). Todas se calculan sobre ventanas de W = 100 muestras para capturar el 

comportamiento reciente. Además, se verifica la estacionariedad mediante ADF en 

segmentos nominales, lo que habilita calibración estadística de umbrales (Dickey y Fuller, 

1979; Wang et al., 2023). El uso de AE y LSTM se apoya en representación robusta y 

modelado secuencial (Vincent et al., 2008; Hochreiter y Schmidhuber, 1997; Malhotra et 

al., 2016; Hundman et al., 2018). 

El sistema se apoya en telemetría interna (p. ej., /cmd_vel, /odom, /laser_scan, /imu/data; 

y etiquetas /movement_label, /attack_type), y produce una decisión binaria con 

persistencia K y alertas (/ads/alert). En evaluación offline, con selección explícita del 

punto de operación bajo restricción de FPR, se obtienen altas tasas de detección y baja 

latencia, lo que indica viabilidad para despliegue en línea sobre ROS 2 (Abokhdair y Baig, 



2025).  

 

2. METODOLOGÍA 

2.1. Entorno experimental y datos 

Se utiliza el simulador Gazebo con un robot TurtleBot3 en un mundo vacío para construir 

línea base de normalidad y generar secuencias mixtas (normales y anómalas). La 

adquisición corre en Docker/ROS 2 con nodos de recolección, cálculo de entropías y 

detección. La tasa nominal es 10 Hz; para modelado se remuestrea a 20 Hz (interpolación 

breve en huecos), facilitando ventanas uniformes W=100 (~5 s). 

El nodo recolector se suscribe a /cmd_vel, /laser_scan, /imu/data, /odom, 

/movement_label, /attack_type, deriva magnitudes cinemáticas (velocidades y 

aceleraciones lineal/angulares, magnitud de velocidad, jerk) y registra CSV con 

timestamp. El generador de anomalías introduce patrones (alta/baja frecuencia de 

comandos, stop and go, ráfagas), con fracción anómala global ~15–20 %. 

 
Figura 1. Flujo del ADS en ROS 2/DDS. El ADS suscribe telemetría, combina 

entropías+AE+LSTM y decide con umbral th y persistencia K; ante anomalía 

publica /ads/alert. Superficie de ataque indicada a la izquierda. (Fuente: 

elaboración propia). 

 

2.2. Métricas de entropía y ventana deslizante 

En cada ventana W=100 se calculan tres medidas. Shannon (H) cuantifica la 

incertidumbre global de la distribución de Δt (intervalos de llegada) u otras 

señales; la implementación usa conteos/probabilidades con corrección 

numérica para evitar log(0). La entropía de transiciones mide la incertidumbre 

de Δx = xt+1−xt, sensible a jitter, ráfagas e irregularidades breves. La entropía 

por KDE (HKDE) estima densidad no paramétrica y usa un plug in de entropía 

diferencial, capturando cambios sutiles de forma (colas, multimodalidad) 



(Myers et al., 2025). La actualización deslizante añade el dato reciente y 

descarta el más antiguo, manteniendo W constante y reflejando condiciones 

presentes. 

 

2.3. Pipeline AE+LSTM y regla de decisión 

El Autoencoder (sobrecompleto; regularización L2, dropout, early stopping; 

estandarización aprendida solo en entrenamiento) produce (i) error de 

reconstrucción y (ii) embedding latente para un LSTM que predice un paso. El 

puntaje de anomalía combina, con estandarización robusta (mediana/MAD) y 

pesos (α, β), el error del AE y el del LSTM (Vincent et al., 2008; Hochreiter y 

Schmidhuber, 1997; Malhotra et al., 2016). La decisión aplica umbral th con 

persistencia K para reducir falsos disparos. La calibración offline recorre una 

rejilla de hiperparámetros bajo restricción de FPR . (Tatbul et al., 2018). 

 
Figura 2. Flujo del pipeline AE+LSTM: el encoder transforma xt (R8) en zt (R10); 

el decoder permite reconstrucción; ventanas de tamaño T=20 alimentan el 

LSTM que estima zt+1; el puntaje combina errores de reconstrucción y 

predicción. (Fuente: elaboración propia). 



 

2.4. Preprocesamiento y estabilidad 

El conjunto comprende ~15,8 k registros. Se filtran segmentos nominales, se 

aplica burn in (~600 muestras) y se validan integridad y orden temporal. Se 

analizan variabilidad media y desviación estándar de las entropías: KDE es 

más sensible a fluctuaciones (útil para cambios sutiles), mientras Shannon y 

transiciones aportan estabilidad y sensibilidad complementarias (Myers et 

al., 2025; Shannon, 1948; Nardone, 2014). La ADF sobre nominal respalda 

calibración de umbrales bajo supuestos de estacionariedad (Dickey y Fuller, 

1979; Wang et al., 2023).

 
Figura 3. Evolución temporal de las entropías (Shannon, transiciones y KDE) en 

datos nominales: señal cruda, media móvil y bandas ±1σ. (Fuente: elaboración 

propia). 

 

3. RESULTADOS Y DISCUSIÓN 

3.1. Selección del punto de operación offline 

Bajo una búsqueda en rejilla y con restricción explícita de FPR, la relación FPR-recall 

observada en el barrido de parámetros (Tatbul et al., 2018) se muestra en la Figura 3. 

 



 
Figura 3 – Barrido de parámetros FPR vs. Recall 

 

Con base en ese barrido se seleccionó el punto (α = 1.1, β = 1.4, K = 3) (véase Tabla 1) 

 

Parámetro α* β* K* th
* 

Prevalencia 
π 

Ventana 
T 

Valor 1.1 1.4 3 15.4413 0.098 20 

Tabla 1 – Punto de operación seleccionado Fuente: elaboración propia. 

 

La comparación entre valores de persistencia K bajo FPR ≤ 0.10 se resume en la Tabla 

2. 

K α β th Precisión Recall F1 FPR 

1 0.500 2.000 25.385444 0.491 0.880 0.630 0.099 

2 0.500 2.000 19.219507 0.526 0.999 0.689 0.098 

3† 1.100 1.400 15.441346 0.529 0.999 0.692 0.097 

4 1.100 1.400 15.441346 0.537 0.993 0.697 0.093 

5 1.500 1.000 12.477342 0.519 0.992 0.682 0.100 

6 1.500 0.800 10.423824 0.522 0.992 0.684 0.099 

Tabla 2 – Mejor combinación por K. Fuente: elaboración propia 

 

En la evaluación punto-a-punto (π ≈ 0.098; N = 7 559), se obtiene recall ≈ 0.999, FPR ≈ 

0.097 y F1 ≈ 0.692. A nivel de evento, el hit rate es 100 %, con latencia media ≈ 0.27 



ventanas (mediana 0) y cobertura media ≈ 0.908. La persistencia K atenúa saltos espurios 

y privilegia desviaciones sostenidas, adecuado para despliegues en línea. 

 

 Pred. Pos Pred. Neg 

Real Pos 740 (TP) 1 (FN) 

Real Neg 658 (FP) 6160 (TN) 

 

Tabla 3. Matriz de confusión y métricas (mejor global). Parámetros: α=1.1, β=1.4, K=3, 

th=15.44; N=7 559, π ≈ 0.098; P=0.529, Recall=0.999, F1=0.692; FPR=0.097 

(TNR=0.903); Accuracy=0.913. (Fuente: elaboración propia). 

 

3.2. Análisis de sensibilidad de métricas 

Las tres métricas aportan señales complementarias: Shannon enfatiza cambios en 

dispersión/uniformidad de Δt y otras señales; transiciones captura dinámica local (jitter, 

ráfagas, desorden breve); KDE resalta cambios de forma (colas, multimodalidad) 

(Shannon, 1948; Nardone, 2014; Myers et al., 2025). Su combinación amplía la cobertura 

ante anomalías heterogéneas (inyección de comandos, desincronizaciones, cambios de 

régimen) y reduce la dependencia de un único indicador (Blázquez-García et al., 2021). 

 

3.3. Ventajas prácticas 

El enfoque es ligero y agnóstico de red: opera sobre tópicos y realiza inferencia local, 

viable en recursos modestos. La ventana deslizante W=100 a 20 Hz (~5 s) equilibra 

sensibilidad/estabilidad temporal. La calibración se apoya en ADF (segmentos 

nominales) y en rejilla con FPR constreñido, lo que facilita un ajuste reproducible con 

criterio operativo (Dickey y Fuller, 1979; Tatbul et al., 2018). La integración con ROS 

2/DDS es directa: el ADS consume telemetría, decide y publica /ads/alert, integrándose 

con GUI y registros (Zhang et al., 2022; Fernández et al., 2018). 

 

4. CONCLUSIONES 

Se presentó un esquema híbrido para detección de inyección de datos en ROS 2 que 

integra métricas de entropía (Shannon, transiciones y KDE) con un pipeline AE+LSTM 

entrenado con normalidad (Shannon, 1948; Vincent et al., 2008; Hochreiter y 

Schmidhuber, 1997). La ADF y la calibración bajo restricción de FPR permiten fijar un 

punto de operación con recall casi perfecto, latencia baja y FPR controlado (Dickey y 

Fuller, 1979; Tatbul et al., 2018). El enfoque es ligero, no intrusivo y agnóstico del tráfico 

de red, lo que facilita su despliegue en línea. (Abokhdair y Baig, 2025; Zhang et al., 2022). 

Limitaciones y líneas de mejora: la evaluación es offline y en un mundo vacío con un 

único robot y anomalías sintéticas; los resultados dependen del remuestreo a 20 Hz y del 

tamaño de W=100; la umbralización es estática; no se analizó el impacto de jitter de red 

ni de perfiles QoS heterogéneos. Como trabajo futuro, se propone validar en escenarios 

reales o simulados más complejos (obstáculos, interacción rica), desplegar online con 



medición extremo-a-extremo de latencia/jitter, incorporar umbrales adaptativos y 

detección de drift con aprendizaje continuo, y ampliar variables sensoriales/cinemáticas 

y estados de misión. En aplicaciones, el ADS puede operar como watchdog que publica 

/ads/alert hacia GUI y registros, habilita contención (p. ej., safe stop o degradación 

controlada) y actúa como capa de vigilancia complementaria en arquitecturas robóticas 

distribuidas. 
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